多环芳烃检测方法

    多环芳烃检测方法来找微谱!微谱解决多环芳烃检测方法问题是很专业的哦!多环芳烃(PolycyclicAromaticHydrocarbonsPAHs)是煤,石油,木材,烟草,有机高分子化合物等有机物不完全燃烧时产生的挥发性碳氢化合物,是重要的环境和食品污染物。迄今已发现有200多种PAHs,其中有相当部分具有致癌性,如苯并α芘,苯并α蒽等。PAHs广泛分布于环境中,可以在我们生活的每一个角落发现,任何有有机物加工,废弃,燃烧或使用的地方都有可能产生多环芳烃。以下是微谱小编带来的多环芳烃检测方法!


    一、多环芳烃检测方法


    分析方法编辑随着科学技术的不断进步,多环芳烃的检测方法也在不断地发展变化,从开始的柱吸附色谱、纸色谱、薄层色谱(TLC)和凝胶渗透色谱(GPC)发展到如今的气相色谱(GC)、反相高效液相色谱(RP-HPLC),还有紫外吸收光谱(UV)和发射光谱(包括荧光、磷光和低温发光等),还有质谱分析、核磁共振和红外光谱技术,以及各种分析方法之间的联用技术等。较为常用的是分光光度法和反相高效液相色谱法。近几年来多环芳烃的分析方法发展迅速,出现了如微波辅助溶剂萃取、固相微萃取、超临界流体等多种新的分析技术。


    分光光度法


    分光光度法有紫外分光光度法、荧光光谱法、磷光法,低温发光光谱法和一些新的发光分析法等等。用发光技术分析RAHs多环芳烃样品比吸收分光光度法具有灵敏度高、专属性强等优点。发光法的灵敏度比吸收法高10-100倍,其检出量约在10.6一10.8g范围。由于紫外分光光度法仪器简单,通用性强,所以也比较常见。一般PAHs的mole吸光系数(ε)在10-10左右,检出灵敏度约在µg数量级。


    低温荧光分析法是近几年出现的一种新的多环芳烃分析方法。於立军等利用光纤传导低温装置和荧光分光光度计偶联,对多环芳烃进行低温激发、发射光谱扫描,获得了多环芳烃的Shpolskii低温荧光光谱,呈现出很明显的精细结构,对多环芳烃有很好的鉴别能力。


    物理方法


    ⑴加热法


    水中的苯并[a]芘可通过加热煮沸使其浓度降低,当加热***沸时,其含量可减少37%-57%,如再继续加热,则其含量不再减少,且发现部分苯并[a]芘已转入到加热煮沸形成的沉垢中去。其他多环芳烃也可在加热煮沸过程中部分地被除去。


    ⑵混凝沉淀法


    利用此法及氯化可除去15%一85%的苯并[a]芘,如果再用合成絮凝剂及通过活性炭过滤,所得到的处理水,其多环芳烃的含量可达到食用水的标准。


    ⑶吸附法


    石化厂排出的废水中的荧蒽、苯并[al芘、茚并芘、3,4-苯并荧蒽、11,12-苯并荧蒽、苝及苝等,可以用活性炭吸附去除。使用粉状活性炭,虽然可以降低其臭味,但是要达到饮用水的标准,即0.2µg/L是相当困难的。活性炭对分子量大的多环芳烃吸附效果较差,采用大孔树脂吸附效果较好。总的来说,仅用物理方法处理多环芳烃是困难的,应当结合生化处理方法和化学处理方法一起使用。


    化学方法


    化学法处理多环芳烃主要有光氧化及化学药剂氧化两大类。


    在光氧化过程中,水中的多环芳烃是在光诱发所产生的单线态氧、臭氧或轻基游离基的作用下发生氧化降解的。苯并[a]芘可因光氧化而去除56%,并形成苯并[a]芘-3,6-二酮或其他二酮类化合物,以及一些未知的化合物。


    在化学氧化中,主要是臭氧氧化和氯氧化两种。臭氧去除多环芳烃的效果比其它氧化法为好。水溶液中的4µg/L的苯并[a]芘用2.5µg/L臭氧处理3分钟,则其残余量为0.06µg/L;用0.45mg/L的臭氧处理5分钟,则残余量为0.04µg/L。增加臭氧浓度,延长作用时间,可以提高去除率,但残余量总不会低于0.02µg/L乌锡康。


    降解方法编辑微生物处理方法降解多环芳烃由于运营成本低、适用范围广而研究较多,工业化程度较高,已被很多有机污染物废水处理厂投入使用。


    微生物具有较强的分解代谢能力以及品种多样化和较高的代谢速率,许多细菌、真菌、藻类具有降解多环芳烃的能力。微生物降解多环芳烃一般采用以多环芳烃为**的碳源、能源和将多环芳烃与其它有机质进行共代谢这两种方式。对于土壤中低分子量的3环以下的多环芳烃类化合物,微生物一般采用第1种代谢方式;对于土壤中4环或多环的多环芳烃一般采用共代谢的方式。


    微生物产生加氧酶对多环芳烃进行降解,通过单加氧酶能把一个氧原子加到底物中形成芳烃化合物,继而氧化成为反式双氢乙醇和酚类;细菌则产生双加氧酶,它把两个氧原子加到底物中形成双氧乙烷,进一步氧化为顺式双氢乙醇。二者都产生很多中间产物用来合成自身的细胞蛋白和能量。多环芳烃的***初氧化,即苯环的加氧是控制多环芳烃生物降解反应的速度的关键步骤,此后降解进程加快,没有或很少有中间代谢物的积累.但据报道,中间产物与其母体化合物(多环芳烃)一样具有致癌性和致突变性。


    多环芳烃在反硝化的条件下,可以发生无氧降解,以硝酸盐作为电子受体。在硫酸盐还原环境中,多环芳烃的微生物降解也可发生,以硫酸盐作为电子受体,可以降解蔡、菲、荧蒽等等。


    总之,在去除多环芳烃常规的的物理方法有加热法、混凝沉淀法、吸附法,化学方法有光氧化和化学药剂氧化两类,以及生化处理法。物理方法仅能除去50荀0%,无法彻底降解多环芳烃;常规的化学方法也无法彻底降解多环芳烃;生化法处理时间太长,且去除率只有30-40%.


    薄层色谱编辑薄层色谱法又称薄层层析法,包括吸附薄层和分配薄层。其优点是展开时间短、可使用腐蚀性显色剂、斑点密度很大而易于检测、展开后斑点中的样品可被提取以便采用分光光度法来测定、可作为制备色谱的预实验方法等。


    ⑴吸附薄层


    各种吸附剂的表面都存在着吸附活性,对有机化合物表现出程度不同的吸附能力,正是利用混合物中不同组分的分子、溶剂分子与吸附剂表面分子间的相互作用不同,用一定的溶剂系统(流动相)展开,由于溶剂与混合物里的各组分争夺吸附剂活性表面,发生了吸附与解吸附的可逆过程,随着流动相的移动,这一过程不断进行,使得各组分在两相间的迁移速度不同而移动不同的距离,从而达到分离的目的。


    不同的化合物由于结构性质上的差异,展开剂对它们的洗脱能力和在吸附剂上的吸附、解吸附性能也是不同的。因而在吸附剂上移动的距离也就不会相同,形成各种组分彼此程度不同地分离,性质差异愈大,分离效果愈好。


    ⑵分配薄层


    分配薄层是利用物质在互不相溶的两相溶剂中分配系数不同而达到分离的一种方法。它的基本原理来自两相逆流萃取,是以一种多孔物质作为支持剂(这一点不同于吸附薄层的吸附剂),将极性溶剂在层析过程中始终固定在支持剂上,称为固定相,另用一与固定相不相混溶的溶剂洗脱,称为移动相。被分离的物质在固定相和移动相之间不断地作连续的动态的分配,利用不同成分在两相间分配系数不同而达到分离的目的。


    反相高效液相色谱法(RP.HPPLC)


    高效液相色谱法(HPLC)可在常温下工作、对PAHs分辨率和灵敏度高、柱后馏分便于收集、适合荧光检测器分析等优点,已广泛应用于PAHs的分离和定量中,特别对多环、高相对分子质量的PAHs具有优势。美国EPA推荐使用乙腈和水作为HPLC的流动相,但乙腈价格较贵,且有毒性,贾瑞宝采用甲醇和水作为流动相进行梯度淋洗,16种PAHs的加标回收率为79%-104%,相对标准偏差5.2%-19.5%,适于PAHs的检测。林琳等采用微波提取高效液相色谱法测定土壤中的多环芳烃,检出限为0.10-0.80µg/kg,相对标准偏差为0.60%-4.60%,回收率为58.1%-97.8%。陶敬奇等采用固相微萃取高效液相色谱联用测定水样中8种多环芳烃,通过对萃取和解吸条件的优化,方法的检出限为0.002-0.180µg/L,相对标准偏差为4.4%-2.2%,回收率为91.1%-115.8%,是一种快速分析环境水样中痕量多环芳烃的方法。

11_03.jpg

    多环芳烃检测流程


    1、寄样


    2、报价


    3、签订保密协议


    4、开始实验


    5、结束实验


    6、后期服务


    以上就是微谱小编为大家带来的关于多环芳烃检测方法的相关内容介绍,希望对大家能够有所帮助,多环芳烃检测方法我们是很专业的哦!如果您想要了解更多多环芳烃检测方法资讯请联系微谱客服!


上述内容为转载或编者观点,不代表微谱意见,不承担任何法律责任。